webdevqa.jp.net

Rでのデータフレームの再形成

大きなデータフレームの再形成に問題が発生しています。そして、私は過去に問題の再形成を回避することに比較的幸運でした。それはまた、私がそれでひどいことを意味します。

私の現在のデータフレームは次のようになります。

unique_id    seq   response    detailed.name    treatment 
a            N1     123.23     descr. of N1     T1
a            N2     231.12     descr. of N2     T1
a            N3     231.23     descr. of N3     T1
...
b            N1     343.23     descr. of N1     T2
b            N2     281.13     descr. of N2     T2
b            N3     901.23     descr. of N3     T2
...

そして私は欲しい:

seq    detailed.name   T1           T2
N1     descr. of N1    123.23       343.23
N2     descr. of N2    231.12       281.13
N3     descr. of N3    231.23       901.23

Reshapeパッケージを調べましたが、処理係数を個々の列名に変換する方法がわかりません。

ありがとう!

編集:ローカルマシン(4GBデュアルコアiMac 3.06Ghz)でこれを実行しようとしましたが、次のように失敗し続けます:

> d.tmp.2 <- cast(d.tmp, `SEQ_ID` + `GENE_INFO` ~ treatments)
Aggregation requires fun.aggregate: length used as default
R(5751) malloc: *** mmap(size=647168) failed (error code=12)
*** error: can't allocate region
*** set a breakpoint in malloc_error_break to debug

機会があれば、これをより大きなマシンの1つで実行してみます。

16
Vince

形を変えることは私にとっても常に難しいように思えますが、それは常に少しの試行錯誤でうまくいくようです。これが私が見つけたものです:

> x
  unique_id seq response detailed.name treatment
1         a  N1   123.23           dN1        T1
2         a  N2   231.12           dN2        T1
3         a  N3   231.23           dN3        T1
4         b  N1   343.23           dN1        T2
5         b  N2   281.13           dN2        T2
6         b  N3   901.23           dN3        T2

> x2 <- melt(x, c("seq", "detailed.name", "treatment"), "response")
> x2
  seq detailed.name treatment variable  value
1  N1           dN1        T1 response 123.23
2  N2           dN2        T1 response 231.12
3  N3           dN3        T1 response 231.23
4  N1           dN1        T2 response 343.23
5  N2           dN2        T2 response 281.13
6  N3           dN3        T2 response 901.23

> cast(x2, seq + detailed.name ~ treatment)
  seq detailed.name     T1     T2
1  N1           dN1 123.23 343.23
2  N2           dN2 231.12 281.13
3  N3           dN3 231.23 901.23

元のデータはすでに長い形式でしたが、メルト/キャストが使用する長い形式ではありませんでした。それで私はそれを再溶解しました。 2番目の引数(id.vars)は、溶けないもののリストです。 3番目の引数(measure.vars)は、変化するもののリストです。

次に、キャストは式を使用します。チルダの左側はそのままの状態であり、チルダの右側は値の列を調整するために使用される列です。

多かれ少なかれ...!

20
Harlan

ハーランの答えに基づいて構築する-データがすでに長い形式であり、値を保持する列がcast呼び出しで指定されている場合、再溶解ステップを回避できます。

> x <- read.table(textConnection("  unique_id seq response detailed.name treatment
+ 1         a  N1   123.23           dN1        T1
+ 2         a  N2   231.12           dN2        T1
+ 3         a  N3   231.23           dN3        T1
+ 4         b  N1   343.23           dN1        T2
+ 5         b  N2   281.13           dN2        T2
+ 6         b  N3   901.23           dN3        T2"))
> 
> cast(x, seq + detailed.name ~ treatment, value = "response")
  seq detailed.name     T1     T2
1  N1           dN1 123.23 343.23
2  N2           dN2 231.12 281.13
3  N3           dN3 231.23 901.23
6
learnr

別のオプションは、spreadからtidyrを使用することです。

library(tidyr) 
Wide1 <- spread(x[-1], treatment, response)
Wide1
#  seq detailed.name     T1     T2
#1  N1           dN1 123.23 343.23
#2  N2           dN2 231.12 281.13
#3  N3           dN3 231.23 901.23

反対のアクションはgatherによって実行されます

gather(Wide1, detailed.name, response, T1:T2)
#  seq detailed.name detailed.name response
#1  N1           dN1            T1   123.23
#2  N2           dN2            T1   231.12
#3  N3           dN3            T1   231.23
#4  N1           dN1            T2   343.23
#5  N2           dN2            T2   281.13
#6  N3           dN3            T2   901.23

また、dcast.data.tableからdata.tableがあります

library(data.table)
dcast.data.table(setDT(x), seq + detailed.name~treatment,
                                          value.var='response')
#   seq detailed.name     T1     T2
#1:  N1           dN1 123.23 343.23
#2:  N2           dN2 231.12 281.13
#3:  N3           dN3 231.23 901.23

データ

x <- structure(list(unique_id = structure(c(1L, 1L, 1L, 2L, 2L, 2L
), .Label = c("a", "b"), class = "factor"), seq = structure(c(1L, 
2L, 3L, 1L, 2L, 3L), .Label = c("N1", "N2", "N3"), class = "factor"), 
response = c(123.23, 231.12, 231.23, 343.23, 281.13, 901.23
), detailed.name = structure(c(1L, 2L, 3L, 1L, 2L, 3L), .Label = c("dN1", 
"dN2", "dN3"), class = "factor"), treatment = structure(c(1L, 
1L, 1L, 2L, 2L, 2L), .Label = c("T1", "T2"), class = "factor")), .Names =
c("unique_id", "seq", "response", "detailed.name", "treatment"), class = 
"data.frame", row.names = c(NA, -6L))
3
akrun

reshapeパッケージのstats関数を使用することもできます。サンプルデータセットはありませんが、次のようになります。

reshape(x, idvar=c("seq","detailed.name"), timevar="treatment", direction="wide")
2
Shane

reshape2を使用して同じ結果を取得したい場合は、reshapeパッケージのより高速でメモリ効率の高い書き換えであり、次のように機能します。

主な変更点は、出力としてdata.frameを使用してdcastを実行する場合に、cast関数を使用することです。これは、castreshape関数を置き換えます

library(reshape2)

x = read.table(text = "unique_id seq   response  detailed.name treatment
                           a      N1    123.23         dN1        T1
                           a      N2    231.12         dN2        T1
                           a      N3    231.23         dN3        T1
                           b      N1    343.23         dN1        T2
                           b      N2    281.13         dN2        T2
                           b      N3    901.23         dN3        T2", 
sep = "", header = TRUE)

x

y <- dcast(x, seq + detailed.name ~ treatment, value.var = "response")
y
#   seq detailed.name     T1     T2
# 1  N1           dN1 123.23 343.23
# 2  N2           dN2 231.12 281.13
# 3  N3           dN3 231.23 901.23

# EDIT to show how to return to the original data set:

melt(y, id.vars=c('seq', 'detailed.name'), variable.name='T', value.name='response')

#   seq detailed.name  T response
# 1  N1           dN1 T1   123.23
# 2  N2           dN2 T1   231.12
# 3  N3           dN3 T1   231.23
# 4  N1           dN1 T2   343.23
# 5  N2           dN2 T2   281.13
# 6  N3           dN3 T2   901.23
1
Mark Miller